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Abstract

A new methodology for online tuning of model parameters in a two-phase flow model by taking into
account measured data is presented. Important model parameters are tuned using the ensemble Kalman
filter. The present study is motivated by applications in underbalanced drilling, although the idea of using
the ensemble Kalman filter in tuning of model parameters should be of interest in a wide area of appli-
cations. A description of modeling of the two-phase flow in the well is presented, as well as the imple-
mentation of the ensemble Kalman filter. The performance of the filter is studied, both using synthetic and
experimental data.
© 2003 Elsevier Ltd. All rights reserved.

Keywords.: Ensemble Kalman filter; Two-phase flow; Well-flow modeling

1. Introduction

The development of increased computer power and advances in measuring techniques give new
opportunities in online tuning of complex models. Within atmospheric and oceanic literature
there has been a strong interest in data assimilation during the last decade. This has resulted in the
adaption of Kalman filter techniques to large-scale non-linear models. The use of these Kalman
filter techniques within other areas seems to be a promising area of research. In this paper we will
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demonstrate how the ensemble Kalman filter can be used to tune model parameters of a two-
phase flow system.

Modeling of two-phase flow is a difficult task, and simplifications have to be done. In the
present application we study two-phase flow in wells. As a simplification we treat this as an one
dimensional problem using a model obtained from cross sectional averaging of the Navier—Stokes
equations, replacing second order diffusion terms by empirical correlations (including model
parameters) which are flow regime dependent. These correlations are obtained from laboratory
experiments conducted in different surroundings than real full-scale facilities, and possibilities of
inaccuracies due to system dependencies does therefore exist. It is crucial to use all available
information to tune the model parameters, as their values have large impact on the behaviour of
the system. In particular it is useful to do online tuning, to exploit the current measurements. We
show that such tuning can be done using a Kalman filter approach by including model parameters
in the state vector of the system. The parameters are then updated as new measurements become
available. In this paper we will show that the model parameters we chose are updated satisfac-
torily, leading to improved forecasts of the future flow.

Several Kalman filter techniques have been developed to work with large-scale non-linear
system. We have implemented the ensemble Kalman filter, first introduced by Evensen (1994).
The ensemble Kalman filter is based on a Monte-Carlo approach, using an ensemble of model
representations to build up the necessary statistics. The ensemble Kalman filter is easy to im-
plement and handles strong non-linearities better than other known Kalman filter techniques for
large-scale problems (Verlaan and Heemink, 2001). There is a lot of ongoing work within me-
teorology and oceanography using Kalman filter techniques, both using ensemble Kalman filter
and other techniques. Some recent works in this direction are (e.g. Verlaan and Heemink, 2001;
Anderson, 2001; Hamil et al., 2001). We refer to these works, and the works cited therein for
those who are interested in the state of the art of the research on Kalman filter for large-scale
non-linear models.

To our knowledge, there has been a limited number of applications on ensemble Kalman filter
techniques for tuning model parameters. In the above mentioned works, the focus is on im-
proving the estimate of the state variables, although the tuning of one model parameter is dis-
cussed using an ensemble adjustment Kalman filter in Anderson (2001). (The ensemble
adjustment Kalman filter is a slight modification of the ensemble Kalman filter.) Here we will use
the ensemble Kalman filter to tune nine model parameters. The promising result of the present
work has motivated further studies in using the ensemble Kalman filter for tuning of model
parameters. In Neavdal et al. (2002a,b) the tuning of the permeability field in a porous media
model is studied.

The setup of our model is motivated by applications within underbalanced drilling. The en-
semble Kalman filter was used for tuning of the model parameters in Lorentzen et al. (2001a). In
that study, using both synthetic and full-scale experimental data, we showed that the tuning
improved the fitting of the data, and that more reliable predictions were obtained. Here we both
present results from a study on the robustness of the methodology, using synthetic data, as well as
some more results with full-scale experimental data. An alternative to using the ensemble Kalman
filter to tune the model parameters is to use a least square approach. This technique was exploited
in Lorentzen et al. (2001b). The least square approach is, however, more computationally de-
manding, and seems therefore not to be suitable to online tuning (Lorentzen, 2002).
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We will study the robustness of the ensemble Kalman filter using synthetic data. Measurements
are generated synthetically using different sets of model parameters. It is shown that by using the
ensemble Kalman filter the model parameters are tuned so that the measurements are fitted, and
reasonable predictions are obtained, thereby giving evidence for the robustness of the ensemble
Kalman filter. Although the final judgment of the methodology has to be based on its perfor-
mance on real data, the use of synthetic data give some more possibilities in judging the results.
After studying the robustness of the approach using synthetic data, we present results using a set
of experimental data.

The paper is organized as follows. In Section 2 the physical model is presented. In Section 3 the
implementation of the ensemble Kalman filter is presented. For the convenience of the reader, a
self-contained presentation of the ensemble Kalman filter in general is included. In Section 4 we
discuss the details of the chosen variables (including different covariance matrices) in the setup of
the filter for the present application and present the results.

2. Dynamic model

A model describing one-dimensional two-phase flow in pipelines consists of non-linear partial
differential equations describing mass, momentum and energy balances for each of the phases (see
e.g. Ishii, 1975). This model is obtained from cross sectional averaging of the Navier—Stokes
equations and replacing second order diffusion terms by empirical correlations which are flow
regime dependent. The dynamics of multiphase flow are determined by these balance equations
which involve complicated terms for interface exchanges of mass, momentum and energy. In
addition, wall friction and volumetric forces like gravity are highly responsible for the develop-
ment of the flow.

The focus of this work is the application of filter techniques rather than a detailed fluid de-
scription, and we limit ourselves to consider gas—liquid flow in vertical wells. We assume that no
mass enters or leaves the system through the pipe walls, and we neglect mass transfer between the
phases. The simplified mass conservation equations are then written

0 0

a (akApk) + a ((xkApkvk) =0, k= 1, g, (1)
where 1, g represents the liquid and gas phase respectively, ¢ denote the time variable, o is the
volume fraction, A is cross-section area, p is the density, s denote the coordinate along the pipe
and v is the velocity.

The fundamental two-phase model consists of separate momentum conservation equations for
each phase, and includes complicated terms related to phase interaction. It is however a common
practice in two-phase modeling to add the momentum equations together, which causes the
difficult phase interaction terms to cancel (see Fjelde, 2000; Faille and Heintzé, 1999; Pauchon
et al., 1994). This results in the following simplified equation for the mixture phase (drift flux
formulation):

0 0 0 .
aAQxlplUl + ngpgvg) + aA(o‘lf)lvl2 + chpgvé) +4 ap = _A(K — Pmix& SN 9)7 (2)
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where p is the pressure, K is a friction pressure loss term, 6 is the well inclination
and p.ix = pyo + pioy 18 the mixture density. We further assume that there is no heat ex-
change in the fluid, which makes the energy conservation equation redundant (isentropic
flow).

The stated governing partial differential equations for the two-phase flow are insufficient to
completely describe the physical processes involved. There are more unknowns than equations
and thus closure conditions are required. The missing information in the mixture momentum
equation must be replaced by empirical closure relations which provide information about phase
velocities and pressure loss terms. These relations consist of complicated time-dependent equa-
tions (see e.g. Franca and Lahey, 1992; Bendiksen, 1984; Cassaude et al., 1989; Lage, 2000) and
include several parameters which are only approximately known. Inaccuracies in these parameters
relates to system dependencies such as complex fluid properties, geometry, impurities in the fluids,
flow regime (laminar/turbulent) and unknown pipe properties. The object of this paper is to show
how measurements can be used to improve these parameters, leading to better forecasts of the
two-phase flow. We consider one set of simple closure relations for downward two-phase flow in
the drillstring, and a more sophisticated mechanistic model for upward two-phase flow in the
annulus. This model takes into account the complex and regime-dependent relations for the phase
velocities and pressure loss terms.

In addition to closure relations describing phase velocities it is necessary to specify thermo-
dynamic relations, generally derived by assuming a system in thermodynamic equilibrium (PVT-
models). In this work, the PVT-models are obtained by assuming an ideal gas law and a liquid
density model with fixed compressibility. It is also necessary to provide boundary conditions for
the system. In this context, the flow rates are assumed to be known at the inlet, and the pressure is
assumed to be given at the outlet.

2.1. Closure relations for downward two-phase flow in the drillstring

In the standard drift-flux approach, the closure of the system is achieved by specifying a slip
model between the phases:

vy = Coa(otge + o401) + Ci g = CoaUmix + Ci 4. (3)

In addition, it is necessary to provide an appropriate model for the frictional pressure loss term in
the momentum equation. A frequently used expression for this term is

2
K = Cz,d Bf‘pmixvrznixa (4)

where f is a known flow dependent friction factor, D is the pipe diameter and vyix = Vg0 + 110 18
the mixture velocity. In Egs. (3) and (4), the factors Cy4, Ci, and C,, are assumed to be given
parameters, and are among the parameters which are tuned by the filter technique described in
subsequent sections.
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2.2. Mechanistic model for upward two-phase flow in the annulus

Mechanistic models have become quite popular for describing steady-state two-phase flow in
producing wells. The mechanistic models provide information about flow patterns, pressure drops
and phase velocities:

M(D17D27plapg7fa ,uh:u“g)qmimfxgaal) - (Ugvvla pressurc IOSS), (5)

where Dy and D, are the inner and outer diameter respectively, i and y, are the viscosities for the
liquid and gas phase, 7 is the interfacial tension and gmix = pyogt; + piouv; is the mixture mo-
mentum. Furthermore, it is possible to integrate these mechanistic steady-state procedures into
fully dynamic two-phase flow models to provide the necessary information regarding phase ve-
locities and pressure loss terms (see e.g. Pauchon et al., 1994; Lage et al., 2000a,b; Bendiksen et al.,
1991). We have implemented a recently developed mechanistic model for two-phase flow in an-
nulus, described in the work by Lage (2000), Lage and Time (2000).

A mechanistic model consists of basically two parts, where one part is composed of criteria for
predicting the flow pattern. The other part consists of models for treating each specific pattern.
The framework developed by Taitel and Barnea (1983) is the basis for the definition of the
transition criteria. They considered five different flow configurations (bubble, dispersed bubble,
slug, churn and annular) for upward two-phase flow in pipes and formulated boundaries between
them. Although the implemented method include all five configurations, we limit the following
presentation to bubble flow and slug flow. These flow regimes are dominant in the examples we
have considered, and parameters related to these regimes are tuned by the ensemble Kalman filter
presented in Section 3.

2.2.1. Bubble flow model
Harmathy (1960) proposed

(6)

2

2
(1 — pg)gf]o ’
Pi

Voo = C17},1.53 |:

for the rise velocity of a single bubble rising in an infinite medium, with C;, = 1. It is only a
function of the physical properties of gas and liquid. However, Wallis (1969) proposed that for a
bubble rising in a swarm of bubbles, Eq. (6) should be corrected by

Vo = Voo (1 — 0tg)", (7)

where the exponent » is assumed to be known.

The slippage between gas and liquid phases is the key aspect to be considered for determining
the flow parameters. As suggested by Papadimitriou and Shoham (1991), the slip velocity is de-
fined as

Vg = Uy + Co pVmix-
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This equation is used to calculate the unknown phase velocities. The friction pressure loss is given by

f s

K =Chp—=— P U
Z,th PmixVmix>

where D, is the difference between the outer and inner diameter. The parameters Cyp, C;, and C,,
are added to the vector of parameters which is tuned by the ensemble Kalman filter.

2.2.2. Slug flow model

Fig. 1 presents a schematic diagram of an idealized slug unit in an annulus. Large Taylor
bubbles of length /i, move upward, and Kelessidis and Dukler (1989) proposed the following
expression for the translational velocity vy,:

v = CosUmix + C150.35v/g(D1 + D»),

with Cp; = 1.2 and C,; = 1. The Taylor bubbles are followed by liquid slugs containing small,
uniformly distributed bubbles with an average gas fraction o), = 0.2. By integrating over the
entire slug unit, the following equation for the gas velocity is obtained:
Vg = Uy — @ (Utb - Ug,ls)7
%g

where Is indicates the value of the flow variable in the liquid slug zone. The gas velocity in the
liquid slug zone (vys) is found by using vnix and the equations derived for bubble flow. The liquid
velocity is then found by substituting v, in the expression for gmix. A detailed discussion of
modeling of slug flow, and choice of parameters values, is found in Bendiksen et al. (1996).

A mass balance calculation for the slug unit provides values for the length of the slug unit and
the length of the liquid slug. All the parameters are then available for the pressure drop calcu-
lations. The friction pressure gradient is evaluated in the liquid slug zone as

2f lls
K= Cos = Pl -
2:‘ Dh pleUmIX Zsu

Fig. 1. Slug flow structure.
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The parameters Cy;, C;, and C,; complete the list of parameters which are tuned by the ensemble
Kalman filter.

2.2.3. Transition regime

In order to ensure a smooth development of the two-phase flow, the mechanistic model uses a
transition regime between the bubble flow regime and the slug flow regime. The transition regime
is modeled by performing interpolations of the flow variables resulting from the bubble flow
model and the slug flow model.

2.3. Numerical scheme

The non-linear and coupled characteristic of the drift-flux model makes it impossible to solve
the equations analytically, and a numerical solution strategy is required. The aim of the numerical
solver is to compute accurate and stable approximations of the flow variables (e.g. pressure,
velocity, volume fractions etc.). Numerical methods replace the continuous problem represented
by the Egs. (1) and (2) by a finite set of discrete values.

The drift-flux model can be written as a system of conservation laws which has been analyzed
by Théron (1989) and Gavage (1991). The model was shown to be hyperbolic in a physically
reasonable region of parameters and three distinct and real eigenvalues were obtained under the
main assumption that the liquid phase was considered incompressible. Two of the eigenvalues (4,
and /3) correspond to rapid pressure waves propagating in the upstream and downstream di-
rection of the fluid flow, while the last eigenvalue (4,) is associated to gas volume waves and equal
to the gas velocity. The eigenvalues corresponding to the pressure pulses are generally 10-100
times bigger than the eigenvalue corresponding to the mass transport, i.e. ||, |43] > |4,].

We have chosen a numerical method which follows the idea described in Froyen et al. (2000). It
is a semi-implicit solution strategy which treats the acoustic signals associated with 4; and A3
implicit while maintaining the explicit treatment of the mass transport. The time step is thus
limited by the time interval the mass transport signal use to traverse a grid block. Some of the
solution details are thus sacrificed to increase computational efficiency. This method has been
tested against experimental data in an underbalanced drilling scenario in Lage et al. (2000b).

3. Estimation theory

In the models presented in Section 2 there are some influential parameters which are uncertain.
Improved knowledge on the value of these parameters leads to significantly better predictions of
the system behavior. There are several approaches available to fit these parameters. In Lorentzen
et al. (2001a) the parameters were fitted using the ensemble Kalman filter. A minimization be-
tween the model output and measurements using a least squares approach was pursued in Lo-
rentzen et al. (2001b). Here, we will continue the studies from Lorentzen et al. (2001a), and study
the robustness of the ensemble Kalman filter in the tuning of the model parameters, in addition to
presenting more results using experimental data.

The Kalman filter was initially developed for the discrete-data linear filtering problem. An
introduction to the general idea of the Kalman filter can be found in Maybeck (1979). As the
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measurements become available, they are used to estimate the state of the process. (The states of
the system are the time dependent variables.) It is straightforward to extend the state variables
with model parameters, by treating the model parameters as time dependent variables. The
Kalman filter has been the subject of extensive research, and several adaptions to non-linear
systems have been developed. A recent approach which has been applied successfully for large-
scale non-linear models within oceanographic modeling is the ensemble Kalman filter, first in-
troduced in Evensen (1994).

For the convenience of the reader we present our implementation of the ensemble Kalman
filter. The filter can be divided in two steps, a forecast step and an analysis step. In the forecast
step the state of the system is updated by solving the dynamic model as described in Section 2. In
the analysis step the state of the model is updated to take into account the measurements. The
state vector after running the forecast step is denoted by ¥}, the state vector after the analysis step
by ?;.

The ensemble Kalman filter is based on a Monte-Carlo approach, using an ensemble of
model representations to evaluate the necessary statistics. We have used 100 members in the
ensemble. We selected this size of the ensemble since an ensemble size of this order have been
found to be sufficient for much larger atmospheric models (Houtekamer and Mitchell, 1998).
The influence of the size of the ensemble on the performance of the ensemble Kalman filter for
this application is a topic worthwhile further research. The experience in using the ensemble
Kalman filter for parameter estimation and also for tuning of multiphase flow models is
limited.

The forecast step consists in running the model (i.e. the simulator developed as described in
Section 2.3), which we denote by f, one time step for each member of the ensemble. For the i’th
member of the ensemble at time step k, we denote the forecast state vector by ?’,il. and the ana-
lyzed state by ¥} . In the forecast step the simulator is run from the current time (say timestep
k — 1) to the point in time where the next measurement becomes available (timestep k). The
simulator is run once for each member of the ensemble using the analyzed state ¥}, ; as initial
value. In addition to the updating of the state given by the simulator, random model noise is
added. This gives the equation

Yllfw' =f(¥; )+ € (8)

where €}, ~ N(0,Q;). The notation €}, ~ N(0,Q,) denotes that the model noise is generated by
drawing realizations from a Gaussian distribution with zero mean and covariance matrix Q.
Here the distribution of the model noise may be time dependent. The time dependence of the
distribution of the model noise is due to the fact that the covariance matrix Q may be time de-
pendent.

The filter is initialized by generating an initial ensemble. This is done by specifying a mean
value, ¥ and a covariance matrix, Q, of the initial ensemble. The mean value of the initial en-
semble should preferably be a good estimate of the initial true state. The members of the en-
sembles are then drawn randomly assuming a Gaussian distribution,

lpgj = ?8 + eZ)n,iv (9)

where e, ~ N (0, Q).
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The analyzed state at time step & is computed by taking into account the measurement vector at
time step k. We assume that there is a linear relationship between the measurements, d;, and the
states, ¥y, expressed by the equation

d, = HY,. (10)

The above equation refers to an idealized situation with no noise and no representation error in
the measurements. We assume that these effects can be expressed by a Gaussian random variable
with zero mean and covariance matrix R;. The index £ is included since the covariance matrix of
the measurement noise may be time dependent, for instance when the measurement accuracy is
given as a relative accuracy. We assume that there is no correlation in the noise of measurements
taken at different time steps.

As pointed out in Burgers et al. (1998) it is necessary to define new observations for proper
error propagation in the ensemble Kalman filter. The actual measurement d; serves as the ref-
erence observation. For each member of the ensemble an observation vector d;; is generated
randomly as

0
di;, =di + € is

where e, ~ N(0,Ry).
To apply the Kalman filter, the error covariance matrix for the model is needed. In the Kalman
filter this is defined in terms of the true state as the expectation

E((7, — ¥)(¥, — 7).
Since the true state is not known, we approximate the true state by the mean of the ensemble

—~ 1 N
f f
lPltc ~ ¥, :N Z q’k,iv
i=1

where N is the sample size of the ensemble. With this approximation of the true state, an ap-
proximation of a left factor of the error covariance matrix of the model is

1 — — —
L=ool(v-9) (e-9) - (v-9))
The approximation of the model error covariance matrix then becomes
P =Li(L)" (11)

The expression of the Kalman gain matrix is (see e.g. Maybeck, 1979)
K, =P'H'(HP'H" +R,)".

The analyzed state of each member of the ensemble is computed as
Ve =Y, + Ki(d, — HYL ).

The analyzed error covariance matrix, P}, of the model can be computed along the same lines as
P,f(. Since the updating of the ensemble is linear, the new estimate of the true state, based on the
ensemble after the analysis step is
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Vi~ W= v+ K (d - HY)),
and the model error covariance matrix after the analysis step is
f
P; = (I1-KH)P,.

The underlying assumptions behind the filter are that there is zero covariance between the model
error and the measurement error and that both the model error and measurement error are un-
correlated in time. For the practical implementation of the above procedure, it is important to
bear in mind that while evaluating the Kalman gain matrix, P,i should be entered factorized as in
(11), and the product should be evaluated in an order such that the dimensions of temporary
matrices are kept as low as possible.

4. Results

In this section we present and discuss examples which demonstrate the filter technique de-
scribed above. Details regarding discretization, model error and measurement error are outlined
in Sections 4.1-4.3. Section 4.4 contains two examples where two sets of model parameters are
used to generate synthetic measurements. The ability to reconstruct the parameters by using the
ensemble Kalman filter is then investigated, and forecasts using the estimated parameters are
compared to the synthetic measurements. Section 4.5 contains an example where full-scale ex-
perimental measurements are used to tune the model parameters. A forecast of the two-phase flow
is then compared to the measurements.

4.1. Discretization and state vector

Use of a numerical method requires a discretization of the time and space variables. We have
used a spatial discretization where As = 20 m. Furthermore, a maximum value of 15 m/s is as-
sumed for the gas velocity, which gives a maximum valid time-step At = As/15 s ~ 1.3 s.

By using the ensemble Kalman filter it is possible to combine the information obtained from the
measurements with the model to get an improved estimation of the state vector. The state vector
(V) is composed of discretized pressure values and discretized gas and liquid mass rates. This is
motivated by the fact that these variables are usually measured at some positions during drilling
operations. The observation operator (H) is then composed by choosing the matrix which selects
the values from the state vector corresponding to the measurements. In addition, the state vector
includes several parameters from the closure relations related to drillstring and annulus. The state
vector is then defined as

Y =[v pl,
where

V:["' )2 FJR,g FJR,z ]
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and
p:[Co,d Cia Cga Cop Cip Cyp Gy Cig C2AS]~

Here J indicates the cell number, p; is the average pressure value of the cell, and Fjr , and Fjg are
the mass rate of gas and liquid, evaluated at the right cell wall.

4.2. Model error

The model error consists of both an initial error and an accumulating error term, with co-
variance matrixes Q, and Q, respectively. In this context we assume that the model error for the
well flow variables v is accounted for by the uncertainty in the model parameters. This is done
because the well flow parameters have notable impact on the flow behavior. The friction pa-
rameters influence the pressure gradient, while the slip parameters directly affect the flow velocities
and flow rates. In addition, it is difficult to produce good estimates of the uncertainty of the
discretized flow variables and the correlations which inevitably exist between them.

We assume Q, to be time independent, and it can be written as

0, ifi#j, iorj<M
€, if i=j<M

Q= (697,  ifi=j>M ’
a?q?pg, otherwise

where M is the number of variables in v, and ¢ is a small positive number (2.22x 107!¢) which
ensures that Q is positive definite. We note that pg must be chosen in order to preserve positive
definiteness. The matrix Q is expressed in the same manner.

The values pg represent the correlation coefficients for the model errors related to the pa-
rameters. It is difficult to obtain accurate values for these correlations, and several values have
been tried in the process leading to the results shown here. If no correlation between the pa-
rameters was assumed, we experienced cases where the parameters drifted towards unphysical
values. This is due to the fact that parameters can counteract and several compositions can
produce the same result. Based on this, we have chosen a common correlation pg = pg" =0.85
between all the parameters. (The value for these correlation coefficients is also based on experience
resulting from the examples in Lorentzen et al., 2001a.) The consequences of this assumption is
discussed further in Section 4.4.

As pointed out, the choice of the covariance matrix Q, has great impact on the performance of
the filter. Here we have demonstrated that a certain choice of Q give reasonable performance of
the filter, but we have not tried to tune the the entries of the covariance matrix Q to optimize the
performances. This is a topic for further research.

We also need to specify the expected initial state ?g in Eq. (9). This is done by assuming that
the well is initially filled with stagnant liquid and by using a set of predefined default model
parameters. The predefined parameters are Cp, = 1 and C, ; = —0.1 for the parameters in Eq. (3),
and 62,6, =1 in Eq. (4). For the parameters in the mechanistic model, we use the values as pro-
posed by Lage and Time (2000). This gives an expected initial parameter vector

pp=[1 =01 1 1 1 1 1.2 1 1]
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4.3. Measurement error

The covariance matrix R, must be specified in order to apply the ensemble Kalman filter. In this
context, we assume that measurement errors are uncorrelated. As done in Cohn (1997), the
measurement error can be split into a term related to the measurement device and one term which
is state-dependent due to a discretized numerical model (representativeness error). In Section 4.4
the pump pressure, bottom hole pressure and gas and liquid return rates are used as measured
variables. In Section 4.5 measurements resulting from five pressure sensors in drillstring and
annulus are used. We assume that flow rates and pump pressure are evaluated at the cell
boundaries, and that representativeness error can be neglected for these values. The uncertainty is
therefore only related to the measurement gauge. A value of 1% is adopted for the rate mea-
surements, and 0.15% is used for the pump pressure.

Calculation of other pressure values are however subject to uncertainty in the numerical
method, as this utilizes average pressure values. An interpolation is needed in order to gain the
pressure values which corresponds to the measured values. There is also an uncertainty related to
the position of the measurement gauge. We perform a simplified ““‘worst case’ analysis to obtain a
value for the representativeness error. We assume that the pressure gauge is located in the middle
of a grid box, and that the grid box is filled with 50% gas. If we neglect fluid velocities and pressure
contribution due to the presence of gas, we get the following uncertainty in the pressure calcu-
lation

p <p<p’,
where p~ = py is the pressure at the gauge position if all the gas in the grid box is located above the
gauge, p = py + % p,gh is the output from the numerical method and p* = py + p,gh is the pressure
if all the gas is located below the pressure gauge, see Fig. 2. If we substitute data resulting from a
1000 m deep vertical well, discretized with 20 m grid boxes, we obtain an uncertainty of 0.5%. For

simplicity, we use this value for all pressure measurements resulting from gauges in the interior
well region.

4.4. Case 1—Synthetic generated measurements

By using synthetic generated measurements it is possible to compare estimated parameters and
estimated physical state variables with a “true” solution. This gives a valuable validation of the
filter, and indicates that it can be trusted when applied at real full-scale drilling operation where
model error is caused by inaccuracies in the model parameters. In order to generate the mea-

Py

hw
—1ll pressure gauge

Fig. 2. Gas distribution in a grid box.
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surements, the numerical method described in Section 2.3 is used to calculate a true state vector
¥, according to the equations

‘Pi = f('{/;ﬁl) +EI'E
and

Y= P+ e (12)
Eq. (10) is then used to calculate synthetic measurements representing pump pressure, bottom
hole pressure and gas and liquid return rates. In this context, we use ?{) = V2. The error terms €'
and e are assumed to have the same distribution as e}’; and ef;, but possibly different correlation

factors pg and pg". In order to investigate the importance of these correlation factors, we show
one example (Section 4.4.1) where measurements are generated by using the same correlation

factors as in the Kalman filter equations (8) and (9), and one example (Section 4.4.2) where pg

and pg" are randomly distributed between 0 and 1. The motivation for adding stochastic noise to
the true parameter values is to simulate external time varying effects caused by the surrounding
environments and drilling equipment (e.g. change of fluid properties, flow variations and tem-
perature variations). In both examples, we have chosen to run the simulator for 80 min, and
sample the measurements every 60 s.

Based on experience, a value of 0.2 is chosen as initial standard deviation (¢2) for all pa-
rameters. A value of 5x 107 is used as the accumulating error term (a,-Q). Note that this value
depends upon how often the measurements are sampled.

We have chosen a dynamic test scenario where gas and liquid are injected (unloading) in two
steps. The well configuration consists of a 1000 m deep vertical drillstring with a 6.03x 107> m
inner diameter, and an annulus with inner diameter equal to 8.89x 1072 m, and outer diameter
equal to 1.59x 107! m. The well is initially at rest and filled with water. Flow rates are increased to
4.25 Sm*/min for gas and 400 I/min for liquid during a 60 s period. These rates are then kept
constant in 40 min. The injection of gas in the drillstring causes the pump pressure to increase
sharply, see the dashed curve in Fig. 3. At approximately 10 min gas enters the annulus and causes

105;

[R O e Measurements
32+ P\ Tmmmmmmmmmmmms . — Estimlated solution
' 100F - - - Non filtered data
28+ | 95t
< .
M 8 9ot
24+
85}
20+
e Measurements 80f
______ — Estimated solution
- - - Non filtered data
16 . - . . T I I ) 75 . - . . . . . )
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
(@ Minutes (b) Minutes

Fig. 3. The figure shows the pressure measurements in example 1, along with estimated data and a solution where the
filter is not applied. (a) Pump pressue, (b) bottom hole pressure.
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the bottom hole pressure to decrease. The gas front reaches the surface after approximately 25
min. At 40 min a new 60 s injection period starts, where the gas and liquid rates are doubled. The
increase in mass rates generates higher frictional pressure loss. This results in a sudden increase in
the pump pressure and the bottom hole pressure. At approximately 50 min a new gas front
reaches the outlet.

4.4.1. Example 1—equal correlation
In this example the parameter correlation used to generate measurements is the same as in the

Egs. (8) and (9), that is pg = pg and pg" = pg". Eq. (12) is used to generate an initial true state,
and in this case the resulting initial parameter vector is

p,=[0.80 —0.30 0.82 0.88 0.83 0.75 1.08 0.81 0.76].

Figs. 3 and 4 show the measurements, the filtered solution and a solution where the filter is not
applied. The non-filtered solution generated with p3, gives a solution which is different from the
measurements, and spurious gas breakthrough and pressure values are calculated. This indicates
the importance and need of accurate estimates of the parameter values. As the solid line indicates,
the ensemble Kalman filter updates the well flow variables and better agreement with the mea-
surements is obtained.

As the measurements are generated synthetically, it is possible to compare estimated and true
flow variables which are not directly measured. Fig. 5 shows the estimated and true gas fraction at
500 m below sea surface in the drillstring and annulus. The figure shows good agreement between
the estimated and true gas fraction, and indicates that the filter gives a good overall estimate of the
well flow. As we will show below, the updated solution will to some degree remain in its new track,
due to a simultaneous update of the parameter vector.

Figs. 6-8 show the evolution of parameter values. Note that the initial estimated parame-
ters deviate slightly from their mean values pi, as they result from the mean of the initial (finite
sized) ensemble. The initial leap towards the true parameter values is due to the initial model error
which has a larger standard deviation than the accumulating error term. This causes the filter to
trust the model less, and measurements more. An improvement in C, and Cy, is observed at
approximately 30 min, see Figs. 7 and 8. At this time gas reaches the outlet where it is highly
sensitive to variations in the model parameters. This causes the error covariance matrix for the
forecasted state to increase, and the model will again be trusted less. In addition, the flow pattern
becomes more complex as a transition regime and a slug flow regime are introduced at approx-
imately 30 min, see Fig. 9. The estimation of the slug flow parameters has prior to this time been
updated solely based upon the parameter correlations. The introduction of the transition and slug
flow regime is due to increased presence of gas in annulus, which leads to a coalescence of the gas
bubbles.

The filter will continuously exert to produce the best overall solution. This implies that the flow
variables with the largest deviation from the measurements are improved, while possibly sacri-

" MATLAB"’s randn-function is used, which produces quasi-random numbers. The sequence of numbers generated
is determined by the state of the generator. By storing this state, the numbers can be reproduced.
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Fig. 4. The figure shows the rate measurements in example 1, along with estimated data and a solution where the filter
is not applied. (a) Gas return rate, (b) liquid return rate.
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Fig. 5. True and estimated void fraction in example 1 at two different positions in the well.

ficing accuracy where the error is small. This is achieved by updating the parameters which have
the largest influence on the solution. In the process of estimating the governing parameters, others
might be withdrawn from their optimal value due to the correlation which exists between the
parameters. This is probably the case for C, , which tends to drift away as C,, and Cy, approach
their true values, see Fig. 6.

As the governing parameters approach the corresponding true values one can also expect the
forecasted solution to better represent the measured data. We perform a forecast at 5 min, which
illustrates the quality of the estimated solution when only a few measurements are taken into
account. In addition, a forecast is performed at 30 min, which is prior to the dynamic behavior
resulting from the second increase in the gas flow rate. Figs. 10 and 11 show the forecasts at these
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Fig. 6. Drillstring parameters in example 1. The dashed line represents the true value and the solid line represents the
estimated value.
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Fig. 7. Bubble flow parameters in example 1. The dashed line represents the true value and the solid line represents the
estimated value.

moments. As the parameters are quickly improved due to the initial model error, the forecast
solution starting from 5 min gives a considerable improvement when compared to the non-filtered
solution. The pressure levels after the second injection are however underestimated, and the gas
breakthrough is slightly displaced. The forecast starting from 30 min has reduced the deviation in
the bottom hole pressure, and we believe this is due to a better estimate of Cy;, see Fig. 8. The
increase of this parameter has probably also caused an increase of parameter C, ;, which results in
a slightly overestimated pump pressure, see Fig. 10. The overall estimate is however improved
compared to the forecast starting from 5 min.
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Fig. 8. Slug flow parameters in example 1. The dashed line represents the true value and the solid line represents the
estimated value.
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Fig. 9. Flow pattern in example 1.

4.4.2. Example 2—random correlation

In this example we show the parameter evolution and predicted solutions when the parameter
correlations used to generate measurements are randomly distributed. We construct a positive
definite correlation matrix IT according to

I1=DU"UD
where U is a upper triangular matrix consisting of random numbers between 0 and 1, and
D = diag(U'U). In this particular case, the realization of p} is

p,=1[140 0.07 0.87 1.02 1.21 144 1.79 1.58 1.51].
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Fig. 10. The figures show predictions in example 1. The vertical lines indicate the start points at 5 and 30 min. (a) Pump
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Fig. 11. The figures show predictions in example 1. The vertical lines indicate the start points at 5 and 30 min. (a) Gas

return rate, (b) liquid return rate.

These parameters deviate very differently form the mean values. The parameter C,, is e.g. more
than 0.1 below its mean value, while Cy; is almost 0.6 above its mean value.

Figs. 12 and 13 show the measurements, the filtered solution and a solution where the filter is
not applied. The physical flow variables are, as in Example 1, updated in accordance to the
measurements. We observe that the true state is quite different when compared to the previous
example. The pump pressure lies below the non-filtered solution, and the bottom hole pressure is
approximately 7 bar too high at the steady state level. In addition, the gas breakthrough occur too

late in the non-filtered solution.

The parameter evolution is shown in Figs. 14-16. Good results are obtained for most of the
parameters, but the slug parameter is poorly estimated prior to the introduction of the slug regime

(at approximately 30 min).
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Fig. 12. The figure shows the pressure measurements in example 2, along with estimated data and a solution where the
filter is not applied. (a) Pump pressue, (b) bottom hole pressure.
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Fig. 13. The figure shows the rate measurements in example 2, along with estimated data and a solution where the filter
is not applied. (a) Gas return rate, (b) liquid return rate.

Figs. 17 and 18 show that predictions from 5 min gives improvements, but the pressure mea-
surements are not completely recovered. At 30 min the slug flow parameters are better estimated,
and the well flow prediction is improved.

4.4.3. Conclusions

We have shown two examples where synthetic generated measurements are used to tune model
parameters in the two-phase flow model. The measurements are generated using a set of “‘true”
parameters, which is drawn from a Gaussian distribution. In Example 2, this distribution was not
the same as in the Kalman filter setup. In Lorentzen (2002), two additional examples are shown.
Here the correlation factors in the model error are respectively above and below the values used in
the Kalman filter setup. As it is difficult to obtain accurate values for correlations between pa-
rameters, these results indicate that the ensemble Kalman filter possess the necessary robustness



0.9

CO,d

0.5

0.8

R.J. Lorentzen et al. | International Journal of Multiphase Flow 29 (2003) 1283-1309

CZ,d

20 40 60 80
Minutes

20 40 60 80
Minutes

20 40 60 80
Minutes

Fig. 14. Drillstring parameters in example 2. The dashed line represents the true value and the solid line represents the
estimated value.
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Fig. 15. Bubble flow parameters in example 2. The dashed line represents the true value and the solid line represents the
estimated value.

for this application. In order to further test the filter, the next example uses a set of full-scale
experimental measurements.

4.5. Case 2—full-scale experimental measurements

In this example the ability to track full-scale experimental measurements is illustrated. Fig. 19
shows a sketch of the experimental facility where the test was carried out. Four pressure-tem-
perature sensors are disposed along the casing string in accordance to the sketch. The 6.5 in. drill
bit with three orifices of 0.88 in. is placed at the bottom of the well at 1275 m of measured depth.
The drill string and the casing constitute an 88.9 x159.4 mm (3.5 x 6.3 in.) annular space. A wire
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Fig. 17. The figures show predictions in example 2. The vertical lines indicate the start points at 5 and 30 min. (a) Pump
pressue, (b) bottom hole pressure.

line logging tool is monitoring real time pressure and temperature in the drillstring at 490 m. In
this context, the temperature measurements are neglected, and pressure measurements from four
sensors in annulus and one sensor in drillstring are used. The measurements are sampled every
60 s, and a period of 180 min is simulated. The effect of variations in the sampling rate and re-
duction of available sensors are discussed in Lorentzen (2002).

In this example we have used 5x 10~ as standard deviation for the accumulating model error
(a,-Q). A value of 1.5x1073 is adopted as initial standard deviation (aiQ‘)). These values should
reflect presumed uncertainty in the model parameters. It was however found necessary to restrict
the standard deviations to some degree, to prevent too radical changes in the parameters from one
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Fig. 19. Well configuration for the test facility.

time step to the next. If this happened, we experienced breakdowns in the simulator in periods
where the flow is highly dynamic.

The tests start with the well at rest and filled with water, and the flow rates are increased to 7.6
Sm?*/min and 605.5 1/min for gas and liquid respectively. The injection of gas in the drillstring
causes the pump pressure to increase sharply. At approximately 20 min the gas enters the annulus
and causes the bottom hole pressure to decrease, see Fig. 24. The pressure sensors detect the
presence of gas as the gas phase reaches their positions. After approximately 50 min of injection,
the gas flow rate is adjusted to 15.2 Sm*/min, while the liquid injection is kept at a constant rate.
The increased presence of gas causes the bottom hole pressure to decrease with time. After 140
min, the gas rate is further increased to 25.4 Sm*/min.
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Figs. 20-22 show the measurements, the filtered solution and a solution where the filter is not
applied. The model error is reduced when compared to Case 1, and the estimated solution is not
following the measurements with the same accuracy as in that case. Improvements are however
seen from approximately 30 min. As can be seen from the figures, the model is over-predicting the
pressure throughout the well, and the (important) bottom hole pressure has at the most an error
of 15 bar. The aim of applying the filter is to estimate parameters with higher validity for this well
scenario, and thereby obtain more accurate forecasts of the flow.

The measurements show some pressure variations which are not present in the forecast solution
(e.g. in the drillstring at approximately 100 min). These variations are due to complex choke
constrains in the experimental facility, and these constrains are not included in the physical model
used here. The focus in this case is therefore to capture the main tendencies of the two-phase flow.
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Fig. 20. The figure shows estimation of the drillstring pressure at 490 m. The measurements and an initial prediction are
also shown.
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Fig. 21. The figures show estimations of the bottom hole pressure and the annulus pressure at 998 m. The measure-
ments and an initial prediction are also shown. (a) Bottom hole pressure, (b) annulus pressure at 998 m.
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Fig. 22. The figures show estimations of the annulus pressure at 494 m and at 240 m. The measurements and an initial
prediction are also shown. (a) Annulus pressure at 494 m, (b) annulus pressure at 240 m.

The state vector available at 60 min is used as initial state in the forecast of the two-phase flow.
Table 1 shows a comparison between the estimated parameters and the parameters found in the
literature. The estimated parameters are in this case reduced by approximately 0.1. This gives
reduced friction pressure loss and gas velocity. The reduced gas velocity influences the hydrostatic
pressure gradient, as more gas is accumulated in the system. The forecasts and measurements are

Table 1
Comparison of parameters found in literature and estimated parameters
Cou Cra Coa Cop Cip Cop Cos Cis Cos
Default -0.1 1 1 1 1 1 1.2 1 1
Estimated -0.2 0.9 1.02 0.87 0.9 0.88 1.11 0.87 0.9
70
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Fig. 23. The figure shows prediction of the drillstring pressure at 490 m.
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Fig. 24. The figures show predictions of the bottom hole pressure and the annulus pressure at 998 m. (a) Bottom hole
pressure, (b) annulus pressure at 998 m.
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Fig. 25. The figures show predictions of the annulus pressure at 494 m and at 240 m. (a) Annulus pressure at 494 m,
(b) annulus pressure at 240 m.

shown in Figs. 23-25. The figures also show a forecast where the estimated physical variables (v) is
used as an initial condition, but the default parameters are still kept. This forecast shows that is is
crucial to update the model parameters, as the well flow in this case quickly approaches the
solution obtain without the filter (compare with the non-filtered data shown in Figs. 20-22).
The forecast using estimated parameters show large improvements at the sensor position in the
drillstring and at the two deepest positions in the annulus. At the positions close to the outlet,
the predictions are drifting away from the optimal track. This is due to the fact that largest
difference between model and measurements occur at positions where the pressure is high.
Measurements at these positions does therefore obtain a larger weight in the Kalman filter
equations, and parameters are tuned so that better agreement is achieved. Accurate prediction of
the bottom hole pressure is however considered to be of particular interest during several oper-
ations related to drilling and production.
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5. Summary and conclusions

A new approach of tuning of parameters in two-phase flow models is presented. The approach
uses an ensemble Kalman filter in the tuning. Motivated by applications in underbalanced
drilling, the modeling of two-phase flow in wells is outlined and the implementation of the en-
semble Kalman filter is presented. We have shown one way of including model parameters in the
filter and present two studies of the suggested approach.

First, we study the robustness of the method using synthetic data. Synthetic measurements are
generated by running the simulator using different sets of model parameters. Although the model
parameters are not correctly recovered, the filter produce solutions which fits the observations and
give improved forecasts compared to using the standard choice of model parameters. As this holds
for different choices of “true” model parameters, this leads us to conclude that the ensemble
Kalman filter approach has necessary robustness properties for this application.

The second study applies the suggested approach to experimental data. It is shown that tuning
the chosen model parameters gives a solution which improved fitting of the measurements, and
the forecast is significantly better than the solution obtained without the filter. Still there are some
behavior of the flow which the filter is not able to track. This points to the fact that there are
challenges ahead both on the modeling of the process and in the use of the Kalman filter tech-
niques for online model parameter tuning.
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